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Simulating Synchronous Processors* "

Jennifer Lundelius Welch o
Laboratory for Computer Science !
Massachusetts Institute of Technology

Abstract: )
)

E Inﬁthis paper «we show ‘how a distributed system with synchronous processors
and asynchronous message delays can be simulated by a system with both asyn-
chronous processors and asynchronous message delays in the presence of various e
types of processor faults. Consequently, the result of Fischer, Lynch and Paterson S
(1985), that no consensus protocol for asynchronous processors and communication y
can tolerate one failstop fault, implies a result of Dolev, Dwork and Stockmeyer o
(1987), that no consensus protocol for synchronous processors and asynchronous e

communication can tolerate one failstop fault. AN
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1. Introduction

In this paper we show how a distributed system with synchronous processors

and asynchronous message delays can be simulated by a system in which both 9

. processors and messages are asynchronous, in the presence of various types of pro- y

cessor failures. One application of this result is that now a result of Dolev, Dwork

and Stockmeyer (1987), that no fault-tolerant consensus protocol is possible in a

¢ distributed system with asynchronous communication even if processors are syn-
¢ chronous, follows easily from the result of Fischer, Lynch and Paterson (1985), that

BT e e -

% . . . .
‘ no fault-tolerant consensus protocol is possible when communication and processors
X

are asynchronous.

The equivalence of a system with synchronous processors and asynchronous

communication to one in which both processors and communication are asyn-

P
PR

chronous has been a folk theorem in distributed computing circles for some time.

5w

One of the contributions of this paper is to present a careful statement and proof

of this result, using a variant of Lamport clocks (Lamport, 1978). We have made

T
& %

e

precise a notion of simulation particularly suited to showing impossibility results.

- -_

Lo
-

The novel feature of this paper is applying the simulation result to obtain an easy .

proof of the impossibility of fault-tolerant consensus for synchronous processors and

asynchronous communication.

The sense in which we show that the two systems are equivalent is that no
o processor can tell if it is in one system or the other. Of course, an outside observer

4 can tell the difference. For instance, if all the processors are to perform some action

‘
' at their tenth step, the effect could be quite different with synchronous processors :
(where the actions would happen at the same real time) than with asynchronous ,

processors (where the actions do not necessarily happen at the same real time). :

Thus, the notion of simulation that we define preserves local views, but not global

views.

We observe that the only situation visible to a processor in the system with

17

asynchronous processors that cannot happen in the system with synchronous pro-
h

5 cessors is for the processor to receive a message at its :'* step that was sent at

0 the sender’s j** step, where j > i. To avoid this anomalous situation, our simula- f

" tion tags all messages with the sendei’s currcii siep nuiuber; then processors save

. messages that arrive too early, and wait to process them until they are no longer ‘

early. (Compare Lamport clocks, which cause the local clock. or step counter. to

o skip ahead when a inessage with too large a timestamp arrives.)
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Neiger and Toueg (1986) have independently developed the same simulation
technique. However, they do not consider faults, and they apply the simulation
to different problems, namely, determining when one can substitute these modified
Lamport clocks for real time clocks while maintaining correctness, and determining
when a variant of common knowledge, achieved with the help of this simulation, can
be substituted for the standard notion of common knowledge. Their paper formally
characterizes types of behavior that can be preserved by this simulation.

Our formal model is presented in Section 2. In Section 3 we show how to do the
simulation for Byzantine processor faults. Simplifications for weaker fault models
are presented in Section 4. Finally, Section 5 demonstrates that the result of Dolev,
Dwork and Stockmeyer (1987) follows from that of Fischer, Lynch and Paterson
(1985).

2. Model

We model a general distributed system in which processors communicate by
sending messages. Conceptually, there is a global clock that measures time in
integer ticks. At each tick, some processors take steps, in which they can atomically
receive messages, change state and send messages. A message buffer holds messages
between the sending and receiving times. A protocol determines for each processor
the state changes and messages sent, given the old state and messages received.
A run of the protocol specifies at each tick which processors take steps and which
messages are received. Various kinds of faulty processor behaviors are introduced
next. After formally defining what a system is in this general model, we define the
type of simulation we are concerned with.

2.1 Basic Model

Messages are assumed to be unigque and are tagged with both the sender’s and
recipient’s names by the message systcim. The message buffer holds messages that

have been sent but not yet reccived. It is modeled as a set of messages. A processor o .+

is a deterministic state machine with a set of states, and a transition function that

uses the current state and messages received to compute the new state and messages *

to be sent (at most one message to each processor). Certain states are designated
imatial states. A protocolis a set of n processors. In our terminology, a processor is
more than just bare hardware — it includes the local algorithm for changing statc
and sending messages. A protocol is the collection of all the local algorithms.
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A step of processor p is designated either a, indicating that p does some com-
putation, or ), indicating that p does nothing. An a step is an active step. A
processor history for processor p, H,, consists of an infinite sequence dys dysq. .. of
states d; of p alternating with steps s; of p such that d; is an initial state, and if
8i = A, then d; = d;iy;. The i** state of H, is denoted state(H,, ), and the i'* step
step(Hp,1). Given processor history H, and integer ¢, define active(Hp,7) to be the
number of active steps in H, up to and including the i*h step. A message buffer
history Hp is an infinite sequence MM, ..., where each M; is a set of messages
and M; = 0, such that if message m is in M; and not in M;41, then m is not in M;
for any j > i. The i** element of Hp is denoted by msgs(Hpg, ).

A run R of protocol P consists of n processor histories Hp, one for cach pro-
cessor p in P, and a message buffer history Hpg such that the following are true.
Suppose message m has sender p and recipient ¢, and : is the smallest integer such
that m is in msgs(Hp,?). (1) Then step(H,.: — 1) is active. We say m is sent
by p at step ¢ — 1. (2) Furthermore, if j is the greatest integer such that m is in
msgs(Hp,j), then step(Hy, j) is active. We say m is received by g at step j.

Given a processor history H,, define states(Hp) to be the (finite or infinite)
sequence of states dyd; ..., where d; = state(H,.1) and d;4; is the state following
the i** active step in H,. (The do-nothing steps have been eliminated and the
state transitions isolated.) For a run R = (Hp, {Hp},ep), define states(R) to be

{states(Hp)},ep-

Various types of processor faults are now considered, classified by their observ-
able effects. Suppose processor p has processor history H, = dis;dzs; ... in run R.
Fix : and let M be the set of messages reccived by p at step s;, and let M' be the
set of messages sent by p at step s;. Processor p operates correctly at step s, if diy;
is the result of p’s transition function applied to d; and M, and if M' is exactly the
set of messages returned by p’s transition function applied to d; and M. Processor
p ezhibits an omission failure upon sending at s, if d; 4 is the result of p’s transition
function applied to d; and a subset § of M, and M' is a strict subset of the set
of messages returned by p’s transition function applied to d; and S. Processor p
ezhibits an omission failure upon receiving at s; if p does not operate correctly at
si, but p's transition function applied to d; and a strict subset of M produces d;,
and a set of messages of which M’ is a subset. A message not used by the transition
function, or not placed in the message buffer is omitted. (Note that these definitions
allow a processor to exhibit an omission failure upon hoth sending and recciving at
the same step.) Processor p ezhibits a Byzantine failure at s; if d;y; and M’ cannot
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be described as the result of p’s operating correctly, or p’s exhibiting an omission ::'l.'
failure upon sending or receiving. 2
»
Processor p is nonfaulty in run R if it takes an infinite number of active steps :‘:E,'
and operates correctly at each one; otherwise p is faulty. Faulty processor p is :::f
. . op e . . §
faslstop-faulty in run R if it takes only a finite number of active steps and operates oy
correctly at each one. Faulty processor p is omission-faulty in run R if p is not Ky
failstop-faulty, and at each active step p either operates correctly or exhibits an ;::
omission failure upon sending or receiving. Faulty processor p is Byzantine-faulty 3;:?
in run R if p is not failstop-faulty or omission-faulty, and at each active step p ':i:
operates correctly, exhibits an omission failure, or exhibits a Byzantine failure. K
®
The next definition concerns communication faults. A message m sent in an ‘?.‘o
infinite run is lostif the recipient takes infinitely many active steps but never receives :“:
m. ’:‘;
"
2.2 Systems ity
30
'*"'3
We are interested in restricting the allowable runs (of any protocol) in different :‘.::'
ways. Fix a protocol P. Let runs(P) be the set of all runs of P. Define the universe .:::
{
of all runs, U, to be |, p runs(P). A systemis a subset of U. The system U can be
characterized as having unreliable, asynchronous communication, since it includes :::1
)
runs in which messages are lost and runs in which messages remain in the buffer ‘.:E
for arbitrarily long periods of time. Similarly, U has asynchronous processors, since "‘.i'
there is no restriction on the number of ) steps between consecutive active steps in '
a processor history. There is also no restriction on the number or types of processor e
faults exhibited, when all the runs of U are considered. :‘-‘:
by
A
The following systems are used as building blocks in this paper. :::‘.
e System SP: the set of all runs such that if a processor takes a A step, then all o
subsequent steps of that processor are A steps. This system has synchronous .:'::
processors. The processors can know the global clock value, because it is the .'é
same as the number of active steps they have taken. tc‘
o System RC: the set of all runs such that no messages are lost. This system has W
W\l
asynchronous, but reliable, communication. :}:
"‘:
We can restrict the number and type of faults to be considered by defining: ::i:«
: »
e System FS(t). the set of all runs such that at most ¢ processors are failstop- )
)
faulty, and the rest are nonfaulty. :;:
U
L]
5 ,3:
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b
o System OM(t): the set of all runs such that at most ¢ processors are omission- .':‘,_
faulty or failstop-faulty. and the rest are nonfaulty. o8
e System BZ(t): the set of all runs such that at most t processors are Byzantine- :h'
faulty, omission-faulty or failstop-faulty, and the rest are nonfaulty. :'e:f
o
2.3 Simulations A
. . . , . . , it
A simulation function f, for processors p’ and p is a function from states of p .::
to states of p. Extend f,» to map sequences of states of p’ to sequences of states of ‘.!é
P by deﬁning fpl(d]dg .. ) = fpl(dl )fpl(dg) cees .j:
Run R' = (Hp/, {Hy }pep') of protocol P’ simulates run R = (Hg, {H,},ep) o
of protocol P via set F = {f, : p' € P'} of simulation functions, if there exists a :2':
one-to-one correspondence ¢ between processors of P' and processors of P with the ::;
following properties. Fix p' in P’, and let p = ¢(p'). (1) The simulation function KX
fp for p' and p satisfies fp(states(Hp)) = states(Hp). (2) If p' is nonfaulty in R’, E-
then p is nonfaulty in R. We say processor p' simulates processor p for runs R and }35
R' via fp. (The simulation function fp does not necessarily cause p’ to simulate p i:g
for other pairs of runs.) :i
Protocol P! in system A’ simulates protocol P in system A if there exists a set ::'
F of simulation functions such that (1) for every run R’ of P’ in system A’. there ‘:::
exists a run R of P in system A such that R' simulates R via F, and (2) for every ::::
run R of P in system A, there is a run R’ of P' in system A’ such that R' simulates i
R via F. We call P’ a simulation protocol for P relative to A’ and 4. ::g.
(N
System A' simulates system A if. for any protocol P, there exists a protocol P’ E::S
such that protocol P’ in system A’ simulates protocol P in system A. 5
This definition of simulation is very strong, since the correspondence between XY
runs of the simulation protocol and runs of the original protocol must be onto. How- '
ever, for showing lower bounds or impossibility results, this strength is good, and : ::.l:
in fact is necessary for the application in Section 5. A more appropriate definition .‘
for upper bounds would not require the correspondence to be onto, but would need 3
some condition on the responses of the simulation protocol to various inputs of the :is
original protocol, in order to rule out trivial solutions. As discussed in the intro- N
duction, this definition of simulation concentrates on the sequences of individual d
processors’ state transitions, and is not concerned with global behavior that is only b
detectable by an observer outside the system. ::‘.:
R
° o
>
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3. Simulating Synchronous Processors with Byzantine Faults :?:
oo
Our goal is to show that if the communication system is asynchronous, then '
synchronous processors “don’t help” — i.e., a system with asynchronous processors ::‘::
and asynchronous communication can simulate (the state transitions of) a system ,:,
with synchronous processors and asynchronous communication, even if there is any :s;‘
number of Byzantine-faulty processors. The main idea of the simulation is for each
asynchronous processor to keep track of how many active steps it has taken and ::‘:.
append this number on each message (of the synchronous protocol) sent. The only :E::
situation visible to the processors in the asynchronous case that cannot occur in the '«f;
synchronous case is for a processor at its i** active step to receive a message that By
was sent at the sender’s j** active step, where j > i. To avoid this anomaly, such by
“early” messages are simply saved up until the recipient has passed its j** active ':‘:‘:
step, and then they are used in the simulation. :}:
X
Although the model of computation presented in this paper gives processors the
ability to receive and send messages in the same atomic step, and to send messages to ?’E
all the processors at one step, this power is not necessary for the simulation to work. ,""
If the model is weakened so that processors can send at most one message at a step, :E:E
or can only send or receive at a step, but not both, (as studied by Dolev, Dwork and o
Stockmeyer (1987)), the same simulation will show that asynchronous processors .:..“
can simulate synchronous processors when communication is asynchronous. ,"::
byt
Subsection 3.1 describes the simulation protocol for a given synchronous pro- :12’
tocol in more detail. In Subsection 3.2, we show how to map a run of the simulation 4
protocol to a run of the simulated protocol. The proof of the main result is presented ;‘,:::
in Subsection 3.3. '::E
v
3.1 Simulation Protocol '.‘
"y

Fix t between 1 and n. Let system S1(¢) be the intersection of systems

BZ(t) and RC and SP. This is the system with at most f Byzantine-faulty pro- Rty
cessors, reliable asynchronous communication and synchronous processors. Let sys- r;
tem Al(t) be the intersection of systems BZ(¢) and RC. This is the system with .
at most t Byzantine-faulty processors, reliable asynchronous communication and ".‘::5
asynchronous processors. ,:

Fix a protocol P. We define a simulation protocol P’ for P relative to A1(#)

and S1(t) as follows. Each processor p’ in P’ is assigned a processor p in P to 5
simulate; it knows the states and transition function for p as well as the processor :1"
7 {

|
:'
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correspondence c¢. Each state d of p' has a component d.szm. It also has components

d.carly, which is a set of messages (to be described below), and d.counter, which
tells the sequence number of the next active step p' will take. Every message m
that p' sends in the step following state d has the value of d.counter appended to
it, in a tag called m.tag. Each processor also keeps the necessary information to
decide if message m from p' is the first message from p' with the tag value m.tag.
(More than one such message is only sent if p' is Byzantine-faulty.)

We first describe the states of p’. An initial state d of p’ has d.sim equal to
an initial state of p, d.early = 0 and d.counter = 1. There is one initial state of p'
for each initial state of p. Non-initial states are obtained by starting from an initial
state and applying p'’s transition function (some number of times).

: We now describe p'’s transition function. Suppose that p' is in state d and
; receives the set of messages M. Let E be the set of all messages m in M U d.early
such that m is the first message received from the sender with the tag value m.tag.
Let M' be the set of all messages m in E such that m.tag < d.counter. Then p’
calculates the result of the transition function for p applied to d.sim and M' (after
removing the tag components of the messages and applying ¢ to the sender’s name).
Call the results the state d’ and the message sct M". Let d' be the new state of p';

v -

d'.sim is set equal to d”, d'.early is set equal to E — M', and d'.counter is sct equal
' to d.counter + 1. The messages sent are those in M", each tagged with d.counter.

3.2 Constructing Corresponding Runs

Pick a run R’ = (Hp',{Hp}pep) of P’ in system Al(t). We describe a
particular run R of protocol P corresponding to R’. [In the next subsection we
show that R is in S1(t).)

We define the message buffer history Hp. Suppose processor p', at its a'?

active step, sends message m’' with tag b to processor ¢'. (As will be discussed in
Section 4, if p’ is not Byzantine-faulty. then « = b.) Let m be the message obtained
from m' by deleting the tag and changing the seuder to p and the recipient to ¢. If
b is anything other than a positive integer (for instance, missing) or if ' is not the
first message received by ¢' from p' with tag b, then nothing corresponding to m’ is
present in Hg. Otherwise, let i = min(a + 1.h + 1). (The goal is for m to be sent
} in R either at the same active step when p' actually sends m', or when p' claims,
‘ via the tag, to have sent it, whichever is earlier.) Suppose ¢’ receives m' at its [t*
| active step. Let j = max(b+1,1). If m' is never received in Hy, or if ¢’ takes fewer

than j active steps, then m is in msgs(H g, k) precisely for all & > 7. Otherwise m

8
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is in msgs(Hp, k) precisely for ( < k < j. No other messages are present. Clearly i
. . oy,
Hp is a message history. Y
We define inductively the processor history H, = d;s;d;s; ... for processor p s
in P, which is simulated by processor p' in P'. Let H, = d}sjdjs).... For the :::
basis, d; = d.stim. Suppose the processor history up to d; has been defined. If '::
there are fewer than ¢ active steps in H,., then s; = A and d;;, = d;. Otherwise, s
s; = o, and djyy = d;.sim, where d} is the state following the t* active step in I
Hy . Clearly, the sequence H, is a processor history for p in P. ,
Ly
gk
Lemma 1: R= (Hp,{H,},cp), as defined above, is a run of protocol P. '
Proof: We already know that the H p 8 are processor histories for P. We must W
show that the message buffer behaves properly. Suppose message m has sender p ,',:
and recipient ¢, and ¢ is the smallest integer such that m is in msgs(Hp,2). (1) 5:1
By construction of R, there exists a such that m' (m with tag b) is sent at p'’s o
a*® active step, and i — 1 = min(a,b). Thus p’ takes at least i — 1 active steps, kv
so step(Hp,t — 1) is active. (2) Suppose m is received in R. Let j be the greatest ":
4
integer such that m is in msgs(Hpg,j). By construction of R, there exists ! such ::::
\
that m is received at ¢'’s I'* active step, j = max(b+ 1,1), and ¢’ takes at least j '::'
active steps. Thus, step(Hy, 7) is active. 0
1
3.3 Results 3
A
‘This subsection contains the proof that the simulation protocol actually works. X
For the remainder of this section, fix a run R' of P' in A1(¢), and construct run R
from R' as above. Recall that processor p' in P’ simulates processor p in P for runs -
R' and R. )
N
Lemma 2: Processor p' takes an infinite number of active steps in R' if and only d
if p takes an infinite number of active steps in R. w
.i
W
Proof: By construction of R. ] .::
oA
-
Nonfaulty, sending omission-faulty and failstop-faulty behaviors are preserved ¢
by the simulation. However, if a processor p’ exhibits an omission failure upon |§‘
receiving in R’ and the message omitted is early, then p in R may exhibit a weaker Y
form of faulty behavior (or perhaps be nonfaulty). Similarly, if a processor p’ \‘:
exhibits a Byzantine failure in R’ and the Byzantine nature of the error only affects .
the tag on a inessage, then p in R may exhibit a weaker form of faulty behavior (or .. .
perhaps be nonfaulty). Leminas 3 and 4 demonstrate these facts. 5:0'
o
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Lemma 3: If p' is not Byzantine-faulty and p' operates correctly at step(Hp, 1),
then p operates correctly at step(H,,3), where j = active(H . 1).

Proof: Suppose at step(H i), p' apphies p's transition function to the net of
messages M', and that p reccives the set of messages M at step(H,, j). The following
argument shows that M’ = M. We say that a message ' of R’ and a message m of
R correspond if the text is the same and the senders and recipients are corresponding
processors (with respect to the simulation). Message m is in A’ if and only if there
is some corresponding message m' such that m' is the first message received from
the sender in H, with tag value m'.tag, m'.tag is a positive integer, and m'.tag < j.

These three conditions arc true if and only if mn is in AL

By construction of R, state(H,,j) = state(Hp .7).sim. Since p' operates cor-
rectly at step(H, .1). and it applies p’s transition function to state(H,,j) and M,
and since state(Hp,,j + 1) = state(H,,i + 1).sim, p changes state correctly at
step(Hp, 7).

Suppose p' sends the set of messages N' at step(H,, 1) and p sends the set
of messages N at step(Hp,j). Since p' operates correctly, we can deduce that
state(Hp,1).counter = j. all the tags of messages in N' are equal to j, there is at
most one message sent to each processor, and no other messages from p' have tag j
(because p’ is not Byzantine-faulty). Thus, if m' is in N', then a corresponding m

1sin NV, and if m is in N, then a corresponding m' is in N'.
Thus, p sends the correct messages at step(H,, j). 0O

Lemma 4: (a) If processor p' is nonfaulty in R', then processor p is nonfaulty in

R.

(b) If processor p' is failstop-faulty in R'. then processor p is failstop-faulty in
R.

(c) If processor p' is omission-faulty in R, then processor p is omission-faulty,
failstop-faulty or nonfaulty in R.

Proof: Parts (a) and (b) follow from Lenunas 2 and 3.

(¢) The hypothesis that p’ is omission-faulty in R’ i cquivalent to assuming
that at each active step (of which there are cither a finite or infinite number), p'
either operates correctly or exhibits an omission failure. and there is some active

step at which p’ exhibits an omission failure.
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By Lemma 3, if p' operates correctly at step(Hp ), then p operates correctly o
. . . . of
at step(Hp,j), where j = active(H,1). v
)
;F
: Suppose p' exhibits an omission failure upon sending at step(H,s,7). Then by ]
’ construction of R, p exhibits an omission failure upon sending at step(H,, ), where :;
' : . . , . f
‘ 7 = active(Hp,1). :
» Suppose p’ exhibits an omission failure upon receiving at step(Hp,1), and "3
- one of the messages omitted is m. Let a = active(Hp,t) and m.tag = b If !
: b < a, then by construction of R, p exhibits an omission failure upon receiving -
; at step(Hp,a) (p' should have used m in the simulation when m was received). If ‘.
b > a, then by construction of R, p could exhibit an omission failure upon receiving .
at step(Hp,b+ 1) (p' should have saved m and used it in the simulation when its ;
counter reached b+ 1). However, it might be the case that the presence or absence ':l
y .. . . . '
i of message m is immaterial to p’s state change and set of messages sent, in which 3
' v .
- case p operates correctly at step(Hp,b+ 1). )
' LY
)
! Thus, at each active step in R, p either operates correctly, or exhibits an
4 omission failure. The result follows. O Wy
L
Lemma 5: R is in system S1(t). |
X
¥ J
:‘ Proof: R is in system SP since, by construction of R, once a processor takes a A N
8 step, all subsequent steps are A steps. "
P
Since R’ is in system BZ(t), at least n — ¢ processors are nonfaulty in R'. By
X Lemma 4, at least n — ¢ processors are nonfaulty in R. Thus, R is in system BZ(t). M
' v
. . . ¢
Next we show that R is in system RC. Suppose message m is sent in R by ’
| processor p to processor ¢, and ¢ takes infinitely many active steps. In R', p' sends )
¥ message m' (m with tag b for some positive integer b) to ¢'. Since R’ is in system N
X RC, and since by Lemma 2 ¢' takes infinitely many active steps, m' eventually Iy
f arrives in R'. say at ¢'’s I** active step. Then m is received at step(H,, ), where ‘
: Jj = max(b+ 1,1). o .
[}
Theorem 6: System Al(t) simulates system S1(t), for any value of t, 1 <t < n. \ :f
F
» '
: Proof: Fix any protocol P. Let P' be the protocol defined above. We must show N
t
' that protocol P’ in system Al(t) simulates protocol P in system S1(t). Let the "
correspondence ¢ between processors in P’ and processors in PP be that implicit in N
y the construction of P'. Define a set F' = {fy : p' € P'} of simulation functions as ::
1
11 '.'
) "
t
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follows. Fix p’ in P’ and let p = ¢(p'). Define simulation function f, from states
of p' to states of p to be f(d') = d' .sim.

The first direction is showing that for every run R’ of P’ in system A1(t), there
exists a run R of P in system S1(t) such that R’ simulates R via F. Given a run R’
of P' in system Al(t), let R be the run cons.ructed as above. By Lemma 1, R is a
run of P. By Lemma, 5, R is in system S1(¢). Now we must show that R’ simulates
R via F. By construction of R, fy(states(H, )) = states(H,). Furthermore, if p'
is nonfaulty in R’, then p is nonfaulty in R, by Lemma 4.

The second direction is showing that given a run R of P in S1(#), there is
a run R' of P’ in system Al(t) such that R’ simulates R via F. The idea of the
construction is to let processors in R' take the same steps at exactly the same ticks as
do the processors they are simulating in R, and to let the message delays be exactly
the same. The key is to observe that a run in which processors are synchronous is
also in the system with asynchronous processors (i.e., S1(t) is a subset of Al(¢)).
The following merely formalizes the idea and adds the appropriate tags to the
messages.

Let R = (Hp,{Hp}pep). Define a message buffer history Hpg' as follows.
Suppose message m from processor p to processor q is in msgs(Hp.1) for some ¢,
and let b be the smallest integer such that m is in msgs(H g, b). Then message m'.
equal to m with tag b— 1, from processor p' to processor ¢', is in msgs(Hpg:,7). No
other messages are in msgs(Hpg, ).

Define processor history Hy: = dysid;s) ... as follows. Let dy be the initial state
of p’ with sim component equal to state(H,,1). Suppose H, has been defined up
to d. Then s; = step(Hp,i). If s; = A, then i, = d}; otharwise let d;, | .sim =
state(Hp,i + 1), di,,.counter = dj.counter + 1, and d} | .carly = 0. This defines
the states of H,.

It is straightforward to show that R' = (Hp. {Hpy}pep') is a run of P’ in
system A1(t), and that R' simulates R via F. 0

4. Simulating Synchronous Processors with Weaker Faults

If the strongest type of processor fault allowed is omission. then the simulation
and proofs can be slightly simplified. Fix ¢ between 1 and n. Let system S2(¢) be the
intersection of systems OM(t) and RC and SP. Let system A2(¢) be the intersection
of systems OM(#) and RC. The same simulation as in Section 3 can be used, except

12
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it is no longer necessary to check if a message is the first one with that tag value.
Since no Byzantine faults are considered, the message tag is always the correct active
step count, so in constructing a run of the simulated protocol, variables a and b are
always equal. Furthermore, Lemina 4 implics that each simulated processor has the
same behavior (or better) as its simulating processor.

Theorem 7: System A2(t) simulates system S2(t), for any value of t, 1 <t < n.

The same simplifications apply if the only type of faults is failstop. Fix ¢
between 1 and n. Let system S3(¢) be the intersection of systems FS(¢) and RC
and SP. Let system A3 be the intersection of systems FS(t) and RC.

Theorem 8: System A3(t) simulates system S3(t), for any value of t, 1 <t < n.

5. Application

An important result in the theoretical study of distributed systems is that
no consensus protocol operating in a system with asynchronous processors and
asyncnronous communication can be guaranteed to terminate, if it must tolerate
even one failstop processor fault (Fischer, Lynch and Paterson, 1985). This result
was subsequently extended (Dolev, Dwork and Stockmeyer, 1987) to show that
no consensus protocol operating in a system with asynchronous communication,
but with processors in lockstep synchrony, can be guaranteed to terminate, if it
must tolerate even one failstop processor fault. The proof of Dolev, Dwork and
Stockmeyer (1987) followed the spirit of the proof of Fischer, Lynch and Paterson
(1985), but required additional machinery and a more involved argument.

The result of Dolev, Dwork and Stockmeyer (1987) can be seen to be a corollary
of the result of Fischer, Lynch and Paterson (1985), using Theorem 8 of this paper.

Given a system S. a consensus protocol P for S is a protocol that satisfies the
following. (1) Each processor’s set of non-initial states has two disjoint subsets, the
0-final states and the 1-final states. Once a processor enters a v-final state, it is
always in a v-final state. (2) There exists a run of P in S in which a processor
enters a 0-final state, and there exists a run of P in § in which a processor enters a
1-final state. (3) For every run of P in system S, if some processor enters a v-final
state, then no processor enters a w-final state for w # v. (4) For every run of P in
system S, some processor enters a v-final state, for some v.

The model of Fischer, Lynch and Paterson (1985) corresponds in our model to
the system A3(1) obtained from the intersection of systems FS(1) and RC, 1.e., the
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system with asynchronous processors, at most one of which is failstop-faulty, and
reliable but asynchronous communication.

Theorem 9: [Fischer, Lynch and Paterson, 1985, Theorem I] There is no consensus
protocol for system A3(1).

The model of Dolev, Dwork and Stockmeyer (1987) corresponds in our model
to the system S3(1) obtained from the intersection of systems FS(1) and SP and
RC, i.e., the system with lockstep-synchronous processors, at most one of which is
failstop-faulty, and reliable but asynchronous communication.

Theorem 10: [Dolev, Dwork and Stockmeyer, 1987, Theorem I0] There is no
consensus protocol for system S3(1).

We now show that Theorem 10 follows from Theoremn 9 using the results of
this paper.

Theorem 11: If there is no consensus protocol for system A3(1), then there is no
consensus protocol for system S3(1).

Proof: Suppose in contradiction that there is a consensus protocol P for system
S3(1). By Theorem 8, system A3(1) simulates system S3(1). Thus, there exists a
simulation protocol P’ such that P’ in system A3(1) simulates P in system S3(1).
The protocol P’ can be used to construct a consensus protocol for system A3(1)
simply by letting v-final states of P’ be those states d such that d.sim is a v-final
state of P. Since P is a consensus protocol for system S3(1), there is a run Ry of
P in system S3(1) in which some processor enters a 0-final state and another run
R, of P in system S3(1) in which some processor enters a 1-final state. Since P’ in
A3(1) simulates P in S3(1), there is a run R of P’ in system A3(1) that simulates
Ry, t.e., in which some processor enters a 0-final state, and another run R} of P’ in
system A3(1) that simulates Ry, i.e., in which some processor enters a 1-final state.
Since P is a consensus protocol for S3(1). and since P is simulated by P’, there is
no run of P’ in system A3(1) with processors in conflicting final states, and some
processor eventually enters a final state in every run in system A3(1). Thus there
is a consensus protocol for system A3(1), contradicting the hypothesis. D
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